42 research outputs found

    FIRI - a Far-Infrared Interferometer

    Full text link
    Half of the energy ever emitted by stars and accreting objects comes to us in the FIR waveband and has yet to be properly explored. We propose a powerful Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging spectroscopy in the FIR. This key observational capability is essential to reveal how gas and dust evolve into stars and planets, how the first luminous objects in the Universe ignited, how galaxies formed, and when super-massive black holes grew. FIRI will disentangle the cosmic histories of star formation and accretion onto black holes and will trace the assembly and evolution of quiescent galaxies like our Milky Way. Perhaps most importantly, FIRI will observe all stages of planetary system formation and recognise Earth-like planets that may harbour life, via its ability to image the dust structures in planetary systems. It will thus address directly questions fundamental to our understanding of how the Universe has developed and evolved - the very questions posed by ESA's Cosmic Vision.Comment: Proposal developed by a large team of astronomers from Europe, USA and Canada and submitted to the European Space Agency as part of "Cosmic Vision 2015-2025

    Probing the Early Stages of Low-Mass Star Formation in LDN 1689N: Dust and Water in IRAS 16293-2422A, B, and E

    Get PDF
    We present deep images of dust continuum emission at 450, 800, and 850 micron of the dark cloud LDN 1689N which harbors the low-mass young stellar objects (YSOs) IRAS 16293-2422A and B (I16293A and I16293B) and the cold prestellar object I16293E. Toward the positions of I16293A and E we also obtained spectra of CO-isotopomers and deep submillimeter observations of chemically related molecules with high critical densities. To I16293A we report the detection of the HDO 1_01 - 0_00 and H2O 1_10 - 1_01 ground-state transitions as broad self-reversed emission profiles with narrow absorption, and a tentative detection of H2D+ 1_10 - 1_11. To I16293E we detect weak emission of subthermally excited HDO 1_01 - 0_00. Based on this set of submillimeter continuum and line data we model the envelopes around I16293A and E. The density and velocity structure of I16293A is fit by an inside-out collapse model, yielding a sound speed of a=0.7 km/s, an age of t=(0.6--2.5)e4 yr, and a mass of 6.1 Msun. The density in the envelope of I16293E is fit by a radial power law with index -1.0+/-0.2, a mass of 4.4 Msun, and a constant temperature of 16K. These respective models are used to study the chemistry of the envelopes of these pre- and protostellar objects. The [HDO]/[H2O] abundance ratio in the warm inner envelope of I16293A of a few times 1e-4 is comparable to that measured in comets. This supports the idea that the [HDO]/[H2O] ratio is determined in the cold prestellar core phase and conserved throughout the formation process of low-mass stars and planets.Comment: 61 pages, 17 figures. Accepted for publication in ApJ. To get Fig. 13: send email to [email protected]

    Heme Oxygenase Protects against Placental Vascular Inflammation and Abortion by the Alarmin Heme in Mice.

    Get PDF
    Both infectious as non-infectious inflammation can cause placental dysfunction and pregnancy complications. During the first trimester of human gestation, when palatogenesis takes place, intrauterine hematoma and hemorrhage are common phenomena, causing the release of large amounts of heme, a well-known alarmin. We postulated that exposure of pregnant mice to heme during palatogenesis would initiate oxidative and inflammatory stress, leading to pathological pregnancy, increasing the incidence of palatal clefting and abortion. Both heme oxygenase isoforms (HO-1 and HO-2) break down heme, thereby generating anti-oxidative and -inflammatory products. HO may thus counteract these heme-induced injurious stresses. To test this hypothesis, we administered heme to pregnant CD1 outbred mice at Day E12 by intraperitoneal injection in increasing doses: 30, 75 or 150 μmol/kg body weight (30H, 75H or 150H) in the presence or absence of HO-activity inhibitor SnMP from Day E11. Exposure to heme resulted in a dose-dependent increase in abortion. At 75H half of the fetuses where resorbed, while at 150H all fetuses were aborted. HO-activity protected against heme-induced abortion since inhibition of HO-activity aggravated heme-induced detrimental effects. The fetuses surviving heme administration demonstrated normal palatal fusion. Immunostainings at Day E16 demonstrated higher numbers of ICAM-1 positive blood vessels, macrophages and HO-1 positive cells in placenta after administration of 75H or SnMP + 30H. Summarizing, heme acts as an endogenous "alarmin" during pregnancy in a dose-dependent fashion, while HO-activity protects against heme-induced placental vascular inflammation and abortion

    TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations

    Get PDF
    TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted

    TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations

    Get PDF
    TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted

    TeraHertz Exploration and Zooming-in for Astrophysics (THEZA): ESA Voyage 2050 White Paper

    Get PDF
    This paper presents the ESA Voyage 2050 White Paper for a concept of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA). It addresses the science case and some implementation issues of a space-borne radio interferometric system for ultra-sharp imaging of celestial radio sources at the level of angular resolution down to (sub-) microarcseconds. THEZA focuses at millimetre and sub-millimetre wavelengths (frequencies above \sim300~GHz), but allows for science operations at longer wavelengths too. The THEZA concept science rationale is focused on the physics of spacetime in the vicinity of supermassive black holes as the leading science driver. The main aim of the concept is to facilitate a major leap by providing researchers with orders of magnitude improvements in the resolution and dynamic range in direct imaging studies of the most exotic objects in the Universe, black holes. The concept will open up a sizeable range of hitherto unreachable parameters of observational astrophysics. It unifies two major lines of development of space-borne radio astronomy of the past decades: Space VLBI (Very Long Baseline Interferometry) and mm- and sub-mm astrophysical studies with "single dish" instruments. It also builds upon the recent success of the Earth-based Event Horizon Telescope (EHT) -- the first-ever direct image of a shadow of the super-massive black hole in the centre of the galaxy M87. As an amalgam of these three major areas of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality studies in the millimetre and sub-millimetre domain of the electromagnetic spectrum.Comment: White Paper submitted in response to the ESA Call Voyage 205

    The science case and challenges of space-borne sub-millimeter interferometry

    Get PDF
    Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the supermassive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10–20 microarcseconds (0.05–0.1 nanoradian). Further developments towards at least an order of magnitude “sharper” values, at the level of 1 microarcsecond are dictated by the needs of advanced astrophysical studies. The paper emphasis that these higher values can only be achieved by placing millimeter and submillimeter wavelength interferometric systems in space. A concept of such the system, called Terahertz Exploration and Zooming-in for Astrophysics, has been proposed in the framework of the ESA Call for White Papers for the Voyage 2050 long term plan in 2019. In the current paper we present new science objectives for such the concept based on recent results in studies of active galactic nuclei and supermassive black holes. We also discuss several approaches for addressing technological challenges of creating a millimeter/sub-millimeter wavelength interferometric system in space. In particular, we consider a novel configuration of a space-borne millimeter/sub-millimeter antenna which might resolve several bottlenecks in creating large precise mechanical structures. The paper also presents an overview of prospective space-qualified technologies of low-noise analogue front-end instrumentation for millimeter/sub-millimeter telescopes. Data handling and processing instrumentation is another key technological component of a sub-millimeter Space VLBI system. Requirements and possible implementation options for this instrumentation are described as an extrapolation of the current state-of-the-art Earth-based VLBI data transport and processing instrumentation. The paper also briefly discusses approaches to the interferometric baseline state vector determination and synchronisation and heterodyning system. The technology-oriented sections of the paper do not aim at presenting a complete set of technological solutions for sub-millimeter (terahertz) space-borne interferometers. Rather, in combination with the original ESA Voyage 2050 White Paper, it sharpens the case for the next generation microarcsecond-level imaging instruments and provides starting points for further in-depth technology trade-off studies.</p

    Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex

    Get PDF

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  μm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∼  300, and pointed observations at R  ∼  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity
    corecore